a2 United States Patent

Nica

US009449045B2

US 9,449,045 B2
Sep. 20, 2016

(10) Patent No.:
45) Date of Patent:

(54) SYSTEM AND METHOD FOR ENHANCED
QUERY OPTIMIZER SEARCH SPACE
ORDERING

(75) Inventor: Anisoara Nica, Waterloo (CA)
(73) Assignee: Sybase, Inc., Dublin, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 105 days.

(21) Appl. No.: 13/082,609

(22) Filed: Apr. 8, 2011
(65) Prior Publication Data
US 2012/0259840 Al Oct. 11, 2012
(51) Imt. ClL
GO6F 17/30 (2006.01)
(52) US. CL
CPC i GO6F 17/30463 (2013.01)
(58) Field of Classification Search
None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,184,998 B2 2/2007 Nica

8,145,621 B2* 3/2012 Nicaetal. 707/713

8,745,037 B2* 6/2014 Zhouetal. 707/718
2002/0184253 Al* 12/2002 Agarwal et al. 707/206
2003/0172059 Al* 9/2003 Andrei GOG6F 17/30454
2004/0225639 Al* 11/2004 Jakobsson et al. 707/2
2008/0033914 Al* 2/2008 Cherniack et al. . 707/3
2008/0120273 Al* 5/2008 Ramesh et al. . . 7072
2008/0120275 Al* 5/2008 Cruanes et al. 707/2

OTHER PUBLICATIONS

Thusoo, et al. “Hive—a petabyte scale data warchouse using
Hadoop”, Mar. 2010, IEEE, 26" Int’l Conf. on Data Engineering,
pp. 996-1005.*

302 304
Client(s) Netwark

29
| 3QL Statzmentds) |
B —

308

PGS, 010, | pacfmmmmmy’ fommmmrnmmndsipn

—
Query Resultis) |
B2

Bowman, 1.T., P. Bumbulis, D. Farrar, A. K. Goel, B. Lucier, A.
Nica, G. N. Paulley, J. Smirnios, and M. Young-Lai, “SQL Any-
where: A holistic approach to database self-management,” in Pro-
ceedings, ICDE Workshops (Self-Managing Database Systems).
Istanbul, Turkey: IEEE Computer Society Press, Apr. 2007, pp.
414-423.

DeHaan, D. and F. W. Tompa, “Optimal top-down join enumera-
tion,” in ACM SIGMOD International Conference on Management
of Data, Beijing, China, Jun. 2007, pp. 785-796.

Ilyas,L.F., J. Rao, G. M. Lohman, D. Gao, and E. T. Lin, “Estimating
compilation time of a query optimizer,” in ACM SIGMOD Inter-
national Conference on Management of Data, San Diego, Califor-
nia, Jun. 2003, pp. 373-384.

R. Klimmek and F. Wagner, “A simple hypergraph min cut algo-
rithm,” http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
31.4535. Internal Report , Bericht FU Berlin Fachbereich
Mathematik und Informatik, Tech. Rep. B 96-02, 1996.

Kossman, D. and K. Stocker, “Iterative dynamic programming: A
new class of query optimization algorithms” ACM Transactions on
Database Systems, vol. 25, No. 1, pp. 43-82, Mar. 2000.
Moerkotte, G. and T. Neumann, “Dynamic programming strikes
back,” in ACM SIGMOD International Conference on Management
of Data, 2009, pp. 403-414.

T. Neumann, “Query simplification: graceful degradation for join-
order optimization,” in ACM SIGMOD International Conference on
Management of Data, 2009, pp. 403-414.

Nica, A. “A Call for Order in Search Space Generation Process of
Query Optimization,” Sybase, Waterloo, Ontario, Canada. 6 pgs.
Nica, A., D. S. Brotherston, and D. W. Hillis, “Extreme visualization
of the query optimizer search spaces,” in ACM SIGMOD Interna-
tional Conference on Management of Data, Providence, Rhode
Island, Jun. 2009, pp. 1067-1070.

(Continued)

Primary Examiner — Charles Adams

(74) Attorney, Agenmt, or Firm — Sterne,
Goldstein & Fox PLLC

Kessler,

(57) ABSTRACT

In an optimizer within a Relational Database Management
System improved ways in which a search space (the uni-
verse of possible join combinations) is generated and man-
aged and improved ways in which the elements of a search
space are evaluated so that among other things unpromising
elements are efficiently dropped (pruned).

22 Claims, 10 Drawing Sheets

Optimizer
Cade Generator

index Mariager)

US 9,449,045 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Nica, A. “Immediate materialized views with outerjoins,” in Pro-
ceedings, ACM Thirteenth International Workshop on Data Ware-
housing and OLAP (DOLAP), in ACM Ninetheenth Conference on
Information and Knowledge Management (CIKM), Toronto,
Canada, Oct. 2010, pp. 45-52.

Ono, K. and G. M. Lohman, “Measuring the complexity of join
enumeration in query optimization,” in Proceedings of the 16th

International Conference on Very Large Data Bases. Brisbane,
Australia: Morgan Kaufmann, Aug. 1990, pp. 314-325.
Steinbrunn, M., G. Moerkotte, and A. Kemper, “Heuristic and
randomized optimization for the join ordering problem,” The VLDB
Journal, vol. 6, No. 3, pp. 191-208, Aug. 1997.

Swami A., “Optimization of large join queries: Combining heuris-
tics and combinatorial techniques,” in ACM SIGMOD International
Conference on Management of Data, Portland, Oregon, Jun. 1989.

* cited by examiner

U.S. Patent

102

Sep. 20, 2016 Sheet 1 of 10
100
-
“““““““ I 104
w ~~~~~~~ » Processor |
O 106
o Main Memory
m o8
m Software |~
u &lor Data
; 110
¢ le—si Secondary [
a Memory 112
t [Hard Disk |-+~ Removable
i Drive Storage Unit
o 14 e
n Removable " Soﬂwé;gw: :
Storage &/or Data |
| Drive -= B —
n le2 i R
' iteraes 0 " Removable
a | b ~i Storage Unit
: 1 95 e
t e InputInterface i« «! Input Device
N T 130
¢ e Output Interface « w Output Device
PO I S S — e
u /;l 36
r 134 e
e i N T T e -
"Q l nte rfa ce P \\ \ { S oftware

US 9,449,045 B2

. 140

Path

US 9,449,045 B2

Sheet 2 of 10

Sep. 20, 2016

U.S. Patent

¢ "Old

& ,m

4

...................................

wieshg Bunesadp

—

- ¥ “ | ¥

¥

S U weibold uoneoyddy | Z weiboid uopesyddy

Uz0z

002~

AN

oz

€202

US 9,449,045 B2

Sheet 3 of 10

Sep. 20, 2016

U.S. Patent

£ "Old

(1eBeuely xapu] :
g abed) as01s ga

get |

10JeI3USL) 8poY)
Jozuundo

o %, ’

: zee
saxapuj : “oee
SRR | 3un uopnoexg |

i %i%w:iiiiiz “gze

o€ |

SogeL

1esieg

sulbuy :;

yee |

91e

weysAgjuawebeueyy aseqeleq .mco_am_mmﬁw.,,

‘pie

1oA108

\

!

90¢

00€ -

425

~

(shinsey Kienp

(shuowas o8

JI0MION

P
yog

E

oLe

c0e

*2)9 ‘$0d

P
80¢

(shusno

U.S. Patent

Sep. 20, 2016

Shee

t 4 of 10

400
S

US 9,449,045 B2

Algoritlun T ordered-Far Alg

: ma&gnzﬁ ff 'w:‘?f&,m_&q

L Gk e

the

fesing

;m’t FEs

L

: i@;}-da_m"n plam generation: call £

: §£1pm* The X wlporithun, the guery by &rvrgs?h GO = (V,

usei%&m
» }g}
sgorithne withot costing themr oall

X

eyapke

HeoatPlaniV}

o Posdeiioned ‘*«g LR b stose valid pastitions In T able

i-:

o

3

}"k

-

% Enumeration Phave: Save
5w By U Bg /% Keep mly

[Portitions(S

f&-'f axParSizel s 3

R

MeasParSize

for sl (W, W & Pord

é‘-ﬂ:ﬁisgmw the sioge of (W, Walk

Sest Pasdsbzon s ";'«! bgsadd on 13‘3&

fromsis) G0

Compuw the sevee of (5, Sa b

sert (% %) in the ordered w2l B

LESta N

Remavs Uie st ot of the set Frartifions!.
ERCES Ry
08y, S i the vnorkred st Pavdifions{5]

r%%s'}m

(53 Ve e 502
SeorelWy Wt 177 e 504

FIG. 5

U.S. Patent Sep. 20, 2016 Sheet 5 of 10 US 9,449,045 B2

800

o

3”5;5“}%%1331 Genorateest Pland

V«w

7 g Phese; Generale plans Yo tie savod peailions of &%
AMeall twn

B

2

3: x*emm
418 Favis
5

s e 504

the soore of vﬁ‘; E«{;.\y SO

s uil tes

3y w aosi{ploreg
> Best st (S e

| plany = fener
12 ey o BestContiVii 1 ey
continge

e Cplais = Ge

st {pliviea

spate BesbPlan{ 5

S B o Fes otV e 5 3 then

jE conitime

17 if g e e Besioat{V ey 3o Basdlost(5) then
18 catitinie

if:

*’“‘mlgt,«g}“?m g g Frediug. upl
. shering bap plomrge
; s

i
21
2 ;
23 fue ﬂ'n*imn fvr Py titic
”’4 rmiml Emﬂ*e‘mv 3

US 9,449,045 B2

Sheet 6 of 10

Sep. 20, 2016

U.S. Patent

L 9id

R S1£°0 ey SHoF 10887 SO6:9. 1 IMtIq-pALpeo

Q1% $0G7) 06191 0 58T S g

6 S§TH L8R} SO H0S'ST Se8'1 | ARy g(r-paapao

8¢) {9TF 0 10$8T S8 diygq

safeg AJourap {siouny voneziundey | suofiRg PAISOY | SUOHILING PRARS | SUOLRIR PURIAANUT § 1507 pajeunsy WYILd| Y

e

002 /

US 9,449,045 B2

Sheet 7 of 10

Sep. 20, 2016

U.S. Patent

8 'Old

(S)eziSiedxey

(S)ezigledxely

0C6lL 8LLLOLGL #LELCLLLOLG 8 L 9 G ¥ € C | W 0c6lL 8LLIOLGL PLELCLLLOL 6 8 L 9 G ¥V € C | .W
i i { H H i i | i L i H i i i i H O w i i H { i i i H ! L i i i O NwU|
dAudq—« o dAUJGer o
(Isuonipeg(s)elqe Lw | %001 = (Shebpnareduand-—|L | g (Isuonied(s)elqe 1w %001 = (Shebpngiediuanng - — o
(Isuoniied(s)s|geL w | %06 = (S)ebpnalediuaung — - (Isuomued(s)elge L w] %05 = (Shebpnglediuaun — =
(J]suonipied M (Isuoniped (S)eige 1wl —L00l @
| (g)elgeLw | ‘(g)ezisiedxely p/L)uly” = (S)hebpngiedisung --- |1 » w ‘(S)ezIstedXE %) Ul = Aw:mmn_‘wﬂn:cmw:o ol L1 w
= ST \ =
— N4 4/\ ,nAG R " _. 00¢ ruAG
.~ “ i € % \\ N \. nw
- S ’ LT - % / \\ N %
\ =7 et v \ o= \\ 00¢
" R N S e .
NS w—— o= 00v
rg b emmmmmement
P / S PP L
I P o
Ny - -~
o 005
(S)3zISIELXEI "SA 150D [BJ0L (g)azigiedxepy sa Aowap
L 009

008

US 9,449,045 B2

Sheet 8 of 10

Sep. 20, 2016

U.S. Patent

6 "Old

umogdoyl H dAHinoun Y
WBuBoRRORg []] sjesuiy 3 indujuiy 4

ol

G6°0

T
Lol
N

I

S,

g0’

N
1

I |

Ll

S1°L

AERESEEENNN

Lotk
LI 90 00

LR

LT O 0

I}

AN

1
i

IR
1

ST

)
T

Ge'l

sauaNy uleyn -

sauanD ueyd

SO0 pejewSI+3Wi] uoneziunpdo pajess abeisay

safed Alowspy # peieog ebeisay

006

US 9,449,045 B2

Sheet 9 of 10

Sep. 20, 2016

U.S. Patent

0k "oid

umogdo] H dAHInouin & dAyda 3
wbupsempoeg [T sjosuiy B3 mdujuy B4 [PSUIN R
S 0l 5
S03 0o 2
B m
b8 S0&
") ®
= L8 [
2 LI -
¥R [3w S g
E,. S £
% Ll z =
;H..a.\. . w . Aw—v
.,.....u. v —‘m m N o
o T : ; <
. o Sl o 7 € U
1 N .
sauany) apAn g seuanp 9jphD gy
6’1 G

000L

U.S. Patent Sep. 20, 2016 Sheet 10 of 10 US 9,449,045 B2

o
"\
g'g_\ \ ‘.:"\)5}"’\"&. 5‘5 \\\-\ ., ‘::.&) N S
=
o
<
RN & g R =
N , o5 5
o
2
0 @
© 5
<
[3
m .
"]
)]
3 c
© ol B ™) ¥ N \D o o3
1SS0 pajewllsg3+alli] UO!:}.BZ!UJ[IdO pajeds GSBJG/\V = 8—
=+
B o=
.
&
e
Q.
>
==
Q3
£0
£ c
==
RRE7
»n
2
S O
m § S :
-
a
| -
)
band
w
+ © ©® B N W = 1© O
o o™ el o
sabed Aoway # pajeos abesany

US 9,449,045 B2

1

SYSTEM AND METHOD FOR ENHANCED
QUERY OPTIMIZER SEARCH SPACE
ORDERING

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to information
processing environments. More particularly, the present
invention relates to capabilities that enhance substantially
the operation, effectiveness, efficiency, etc. of query opti-
mizers that are found in Database Management Systems
(DBMSs).

2. Background Art

A common element of an information processing envi-
ronment is a database, which is in effect a computer-based
repository of information. Databases are extraordinarily
prevalent and may be found on almost any computing
platform including inter alia mainframe computers; com-
puter servers; Personal Computers (PCs); handheld comput-
ers; pagers; Personal Digital Assistants (PDAs); cellular
telephones, smart phones, and other wireless devices; radios;
TVs; navigation systems; automobile audio systems; net
appliances; etc.

A DBMS serves as a something of a ‘bridge’ between the
information in a database (handling inter alia the organiza-
tion of the information, the storage of the information on
different devices, etc.) and users of the database. Among
other things a DBMS provides database users with a logical
or conceptual view of a database, allowing them to not
concern themselves with inter alia the physical, implemen-
tation, etc. particulars of the database. When a user wishes
to perform some action on the database (e.g., to retrieve a
piece of information from the database, to update a piece of
information in the database, to add a new piece of informa-
tion to the database, etc.) the user will typically submit a
query to the DBMS.

A database may be organized according to different mod-
els such as hierarchical, network, and relational.

Under a relational model a database may comprise inter
alia one or more tables (relations), each table comprising one
or more rows or records (tuples), each row/record compris-
ing one or more columns or fields (attributes), with each
column/field comprising some piece of information. As an
example, a database comprising information on an organi-
zation’s employees might contain a table EMPLOYEES that
houses one record for each employee. Each record in the
EMPLOYEES table might contain fields that preserve spe-
cifics about the employee such as inter alia the employee’s
name (e.g., a field named EMP_NAME), home address
(e.g., a field named EMP_ADDRESS), current position,
salary, work telephone number, etc.

Under a relational model a ‘bridge’ DBMS takes the form
of'a Relational DBMS (RDBMS) and a query to a RDBMS
typically takes the form of a Structured Query Language
(SQL) statement.

A SQL statement (such as for example ‘SELECT EMP_
NAME, EMP_ADDRESS FROM EMPLOYEES’)
expresses a desired result (in the instant example, ‘please
return to me the name and the address of each employee”)
but does not inter alia identify how those results should be
obtained. In other words, the query itself does not specify
how the query should be evaluated by an RDBMS. A
component of an RDBMS, a query optimizer or optimizer,
is responsible for inter alia (1) identifying the different valid
ways in which (plans for how) the data within the database
may be accessed so as to achieve the result that is requested

30

35

40

45

2

by a SQL statement, (2) evaluating and costing the identified
plans, and (3) selecting the ‘best’ (e.g., the cheapest, the
fastest, etc.) plan.

As it completes its work a query optimizer may identify
and evaluate a number of items, artifacts, criteria, etc.
including inter alia join operations.

Classically a RDBMS supports dyadic join operations,
that is join operations that involve just two entities such as
tables (e.g., the join operation T, p« T, involving the two
tables T, and T,). Consequently for a query that requires an
n-way join (i.e., a join operation that involves n tables where
n>2) a query optimizer must inter alia enumerate or identify
(possibly just some subset of) the universe of possible join
combinations (i.e., a search space); evaluate, based on
various criteria including for example cost, some or all of the
candidates in the search space; and then string together one
specific sequence of individual two-way join operations to
arrive at the ‘best’ (e.g., perhaps the cheapest) way of
realizing the required n-way join. For example, for a four-
way join involving four tables (T, T,, T5 and T,) a query
optimizer might arrive at the specific join sequence
(T, paT5) b (15 pa Ty)).

Conventional query optimization techniques often give
rise to various disadvantages. For example:

1) As the number of entities (e.g., tables) in an n-way join
increases the size of the resulting search space, that is the
universe of possible join combinations, grows very quickly
resulting in inter alia longer and longer amounts of time to
iterate through the elements of the search space (to for
example access, review, cost, etc. those elements).

2) For many dynamically generated queries the execution
time of the query itself may be quite small but the optimi-
zation time may be quite large and thus disproportionate to
the execution time.

From all of the different plans that an optimizer may have
to chose from, if it selects a ‘good’ plan then processing of
the query will be completed ‘quickly’ (with possibly inter
alia lower system resource consumption, etc.). Alternatively,
if it selects a ‘bad’ plan then processing of the query will be
completed ‘slowly’ (with possibly inter alia higher system
resource consumption, etc.).

Given the performance, system resource consumption,
etc. ramifications and implications of the query optimization
process it is obviously very important for an optimizer to
identify and select the ‘best’ available query execution plan.
That objective—identifying and selecting the ‘best’ avail-
able query execution plan—is made challenging by the host
of constraints that an optimizer must operate under including
inter alia available system resources (such as memory),
specific query characteristics, parameters such as the maxi-
mum amount of time that an optimizer may spend on any
particular activity, the status of the RDBMS, etc.

Aspects of the present invention address the challenge
that was noted above (1) by (a) improving upon the way in
which a search space is generated and managed and (b)
improving on the way in which the elements of a search
space are evaluated so that among other things unpromising
elements are efficiently dropped (pruned) (2) while address-
ing, in new and innovatory ways, various of the not insub-
stantial challenges that are associated with same.

SUMMARY OF THE INVENTION

In one embodiment of the present invention there is
provided a server-based method for enhanced query opti-
mizer search space management comprising (1) saving,
uncosted and in an ordered fashion, a subset of the enumer-

US 9,449,045 B2

3

ated partitions that are generated by a join enumeration
algorithm in a memoization construct, (2) generating a plan
and costing the plan for a subset of the saved partitions, such
that unpromising partitions are pruned, and (3) selecting one
of the costed plans.

Further features and advantages of the present invention,
as well as the structure and operation of various embodi-
ments thereof, are described in detail below with reference
to the accompanying drawings. It is noted that the invention
is not limited to the specific embodiments described herein.
Such embodiments are presented herein for illustrative pur-
poses only. Additional embodiments will be apparent to
persons skilled in the relevant art(s) based on the teachings
contained herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts an exemplary computer system through
which embodiments of aspects of the present invention may
be implemented.

FIG. 2 illustrates an exemplary computer software envi-
ronment that may among other things direct the operation of
aspects of FIG. 1’s computer system.

FIG. 3 illustrates aspects of an exemplary information
processing environment.

FIG. 4 illustrates an ordered-Par() algorithm that encap-
sulates aspects of the present invention.

FIG. 5 illustrates one possible EnumeratePartition()
algorithm.

FIG. 6 illustrates one possible GenerateBestPlan() algo-
rithm.

FIG. 7 captures the results of a particular query being
optimized through two different algorithms.

FIG. 8 captures two specific results from a particular
query being optimized through two different algorithms.

FIGS. 9—11 capture two specific results from a particular
query having three different shapes being optimized through
different algorithms.

The features and advantages of the present invention will
become more apparent from the detailed description set
forth below when taken in conjunction with the above
identified drawings.

Throughout the drawings (a) like reference numbers gen-
erally indicate identical, functionally similar, and/or struc-
turally similar elements and (b) the left-most digit(s) of a
reference number generally identify the drawing in which
the reference number first appears. For example, in FIG. 6
reference numeral 504 would direct the reader to FIG. 5 for
the first appearance of that item.

It will be understood that the drawings identified above
depict embodiments of the invention. Variations of these
embodiments will be readily apparent to persons skilled in
the relevant art(s) based on the teachings contained herein.

DETAILED DESCRIPTION OF THE
INVENTION

Embodiments of the present invention are described
herein in the context of a method and apparatus for enhanced
query optimizer search space ordering. Those of ordinary
skill in the relevant art will realize that the following detailed
description of the present invention is illustrative only and is
not intended to be in any way limiting. Other embodiments
of the present invention will readily suggest themselves to
such skilled persons having the benefit of this disclosure.

15

25

30

35

40

45

55

4

Reference will now be made in detail to implementations of
the present invention as illustrated in the accompanying
drawings and as described below.

In the interest of clarity, not all of the routine features of
the implementations described herein are shown and
described. It will, of course, be appreciated that in the
development of any such actual implementation, numerous
implementation-specific decisions must be made in order to
achieve the developer’s specific goals, such as compliance
with application- and business-related constraints, and that
these specific goals will vary from one implementation to
another and from one developer to another. Moreover, it will
be appreciated that such a development effort might be
complex and time-consuming, but would nevertheless be a
routine undertaking of engineering for those of ordinary skill
in the art having the benefit of this disclosure.

Various aspects of the present invention may be imple-
mented by software, firmware, hardware, or any combina-
tion thereof. FIG. 1 illustrates an example computer system
100 in which the present invention or portions thereof (such
as for example described below in accordance with FIGS.
3-11 and their corresponding description can be imple-
mented as computer-readable code. Various embodiments of
the invention are described in terms of this example com-
puter system 100. After reading this description, it will
become apparent to a person skilled in the relevant art how
to implement the invention using other computer systems
and/or computer architectures.

Computer system 100 includes one or more processors,
such as processor 104. Processor 104 can be a special
purpose processor or a general purpose processor. Processor
104 is connected to a communication infrastructure 102 (for
example, a bus or a network).

Computer system 100 also includes a main memory 106,
preferably Random Access Memory (RAM), containing
possibly inter alia computer software and/or data 108.

Computer system 100 may also include a secondary
memory 110. Secondary memory 110 may include, for
example, a hard disk drive 112, a removable storage drive
114, a memory stick, etc. Aremovable storage drive 114 may
comprise a floppy disk drive, a magnetic tape drive, an
optical disk drive, a flash memory, or the like. A removable
storage drive 114 reads from and/or writes to a removable
storage unit 116 in a well known manner. A removable
storage unit 116 may comprise a floppy disk, magnetic tape,
optical disk, etc. which is read by and written to by remov-
able storage drive 114. As will be appreciated by persons
skilled in the relevant art(s) removable storage unit 116
includes a computer usable storage medium 118 having
stored therein possibly inter alia computer software and/or
data 120.

In alternative implementations, secondary memory 110
may include other similar means for allowing computer
programs or other instructions to be loaded into computer
system 100. Such means may include, for example, a
removable storage unit 124 and an interface 122. Examples
of such means may include a program cartridge and car-
tridge interface (such as that found in video game devices),
a removable memory chip (such as an Erasable Program-
mable Read-Only Memory [EPROM], or Programmable
Read-Only Memory [PROM]) and associated socket, and
other removable storage units 124 and interfaces 122 which
allow computer software and/or data to be transferred from
the removable storage unit 124 to computer system 100.

Computer system 100 may also include an input interface
126 and a range of input devices 128 such as, possibly inter
alia, a keyboard, a mouse, a track ball, a pointing device, etc.

US 9,449,045 B2

5

Computer system 100 may also include an output inter-
face 130 and a range of output devices 132 such as, possibly
inter alia, a display monitor, one or more speakers, a printer,
etc.

Computer system 100 may also include a communica-
tions interface 134. Communications interface 134 allows
computer software and/or data 138 to be transferred between
computer system 100 and external devices. Communications
interface 134 may include inter alia a modem, a network
interface (such as inter alia an Ethernet card), a communi-
cations port, a Personal Computer Memory Card Interna-
tional Association (PCMCIA) slot and card, or the like.
Computer software and/or data 138 transferred via commu-
nications interface 134 are in the form of signals 136 which
may be electronic, electromagnetic, optical, or other signals
capable of being received by communications interface 134.
These signals 136 are provided to communications interface
134 via a communications path 140. Communications path
140 carries signals and may be implemented using wire or
cable, fiber optics, a phone line, a cellular phone link, a
Radio Frequency (RF) link or other communications chan-
nels.

As used in this document, the terms “computer program
medium,” “computer usable medium,” and “computer read-
able medium” generally refer to media such as removable
storage unit 116, removable storage unit 124, and a hard disk
installed in hard disk drive 112. Signals carried over com-
munications path 140 can also embody the logic described
herein. Computer program medium and computer usable
medium can also refer to memories, such as main memory
106 and secondary memory 110, which can be memory
semiconductors (e.g. Dynamic Random Access Memory
[DRAM)] elements, etc.). These computer program products
are means for providing computer software to computer
system 100.

Computer programs or software (also called computer
control logic) are stored in main memory 106 and/or sec-
ondary memory 110. Computer programs may also be
received via communications interface 134. Such computer
programs, when executed, enable computer system 100 to
implement the present invention as discussed herein. In
particular, the computer programs, when executed, enable
processor 104 to implement the processes of aspects of the
present invention, such as for example the steps discussed
below in accordance with FIGS. 3-11 and their correspond-
ing description. Accordingly, such computer programs rep-
resent controllers of the computer system 100. Where the
invention is implemented using computer software, the
computer software may be stored in a computer program
product and loaded into computer system 100 using inter
alia a removable storage drive 114, an interface 122, a hard
drive 112 or a communications interface 134.

The invention is also directed to computer program prod-
ucts comprising computer software stored on any computer
usable medium. Such computer software, when executed in
one or more data processing devices, causes the data pro-
cessing device(s) to operate as described herein. Embodi-
ments of the invention employ any computer usable or
readable medium, known now or in the future. Examples of
computer usable mediums include, but are not limited to,
primary storage devices (e.g., any type of RAM), secondary
storage devices (e.g., hard drives, floppy disks, Compact
Disc Read-Only Memory [CD-ROM] disks, Zip disks,
tapes, magnetic storage devices, optical storage devices,
Microelectromechanical Systems [MEMS], nanotechno-
logical storage device, etc.), and communication mediums

10

15

20

25

30

35

40

45

50

55

60

65

6

(e.g., wired and wireless communications networks, local
area networks, wide area networks, intranets, etc.).

When it is used within a (Local Area Network (LAN),
Wide Area Network (WAN), etc.) networking environment
computer system 100 may be connected (by inter alia a
wired connection or a wireless connection) to a network
through a network interface or adapter (such as inter alia an
Ethernet card) via communications interface 134. Under
such a networked environment, computer programs (com-
puter control logic) may be stored, either in whole or in part,
on one or more remote memory storage devices (in addition
to the previously noted main memory 106 and/or secondary
memory 110).

FIG. 2 illustrates a computer software environment 200
that inter alia may direct the operation of aspects of the
computer system 100. Computer software environment 200,
which may be stored inter alia in main memory (e.g., RAM)
106 and/or on secondary storage (e.g., a hard disk drive) 110,
includes inter alia an Operating System (OS) 204. The OS
204 manages low-level aspects of computer operation
including inter alia managing the execution of processes,
memory allocation, file Input and/or Output (I/O), and
device I/0. One or more application programs, such as client
application software or programs 202 (e.g., 202a,
2025, . . . 202r) may be loaded (e.g., transferred from
storage 110 into main memory 106) for execution by the
computer system 100. The applications or other software
intended for use on the computer system 100 may also be
stored as a set of downloadable computer-executable
instructions, for example, for downloading and installation
from an Internet location (e.g., an application server, World
Wide Web (WWW) server, etc.).

Computer software environment 200 includes inter alia a
Graphical User Interface (GUI) 206 for receiving user
commands and data in a graphical (e.g., a point-and-click)
fashion. These inputs, in turn, may be acted upon by the
computer system 100 in accordance with instructions from
the OS 204 and/or client application software 202. The GUI
206 also serves to display the results of operation from the
OS 204 and client application software 202, whereupon the
user may supply additional inputs or terminate the session.
Commonly the OS 204 operates in conjunction with possi-
bly inter alia device drivers 208 and the system Basic
Input/Output System (BIOS) 210, particularly when inter-
facing with peripheral devices 212.

Popular examples of OS 204 include inter alia the differ-
ent versions of Windows from Microsoft®, the different
versions of UNIX, the different versions of Linux, etc.

The above-described computer system and computer soft-
ware environment were presented for purposes of illustrat-
ing the basic underlying PC, server, etc. computer compo-
nents that may be employed for implementing aspects of the
present invention. It will be readily apparent to one of
ordinary skill in the relevant art that numerous other com-
ponents and/or component arrangements are easily possible.

For simplicity of exposition the description below will at
times present examples in which it will be assumed that
there exists a “server” (e.g., an application server, a WWW
server, etc.) that inter alia communicates with one or more
“clients” (e.g., PCs; PDAs; handheld computers; cellular
telephones, smart phones, and other wireless devices; etc.).
The present invention, however, is not limited to any specific
environment or device configuration. For example, a client/
server distinction is not necessary to the invention but is
used to provide a framework for discussion. To the contrary,
the present invention may be implemented in any type of

US 9,449,045 B2

7

information processing environment that is capable of sup-
porting the methodologies of the present invention as
described in detail below.

FIG. 3 and reference numeral 300 illustrate aspects of an
information processing environment comprising among
other things one or more clients 302 (which may include
inter alia PCs; handheld computers; pagers; PDAs; cellular
telephones, smart phones, and other wireless devices; radios;
TVs; navigation systems; etc. 308) that are inter alia in
communication, via a network 304, with a server 306. The
server 306 comprises inter alia a RDBMS 314.

At a high level clients 302 inter alia submit SQL state-
ments 310 to the RDBMS 314, an engine 316 of the RDBMS
evaluates and processes the SQL statements 310, and the
RDBMS 314 dispatches query results 312 to the clients 308.

The exemplary RDBMS engine 316 that is illustrated in
FIG. 3 comprises:

1) A parser 318 that accepts a SQL statement 310 (e.g., as
received from a client 302), processes (i.c., parses, etc.) the
SQL statement 310, and produces possibly inter alia a query
tree.

2) A normalized 320 that processes a query tree to inter
alia remove redundant operations, complete various error
checking and other validation operations, etc.

3) A compiler 322 that (a) through an optimizer 324
identifies and evaluates for a query tree a range of query
execution plans and then selects a ‘best’ plan and (b) through
a code generator 326 generates the code necessary for the
RDBMS to realize the selected ‘best’ plan.

4) An execution unit 328 that executes inter alia the
generated code.

5) Various access methods 330 and a database store (page
and index manager) 332 that support interactions with inter
alia the different tables 334 and indexes 338 that are main-
tained by the RDBMS 314 to among other things arrive at
the information 336 that is required to satisfy (reply to) the
SQL statement 310.

The particular components and component arrangement
that were depicted in FIG. 3 are illustrative only and it will
be readily apparent to one of ordinary skill in the relevant art
that numerous other components and/or component arrange-
ments are easily possible.

The present invention may reside within the optimizer
component 324 of a RDBMS 314 where it can be used to
inter alia enhance substantially the operation, performance,
etc. of an optimization algorithm (for simplicity referred to
below as ‘algorithm X’) such as for example DPhyp(),
MinCutHyp(), TopDown(), etc. (as offered by for example
SQL Anywhere from Sybase®) that is executed within a
RDBMS optimizer. Such optimization algorithms have sev-
eral common characteristics including possibly inter alia (1)
they exhaustively enumerate valid partitions of the form (S,,
S,), corresponding to the logical join operation S; p« S,, for
a subset S=S, U S, and preserve same in a memoization
construct (referred to below as mTable|]), (2) generate a
plan and then cost the plan for each partition, and (3) then
complete various pruning and review operations on the
generated/casted plans to inter alia arrive at a ‘best’ plan.

Aspects of the present invention enhance substantially an
algorithm X’s operation, performance, etc. by inter alia
ordering the enumerated partitions and generating plans for
only a fraction of the partitions, effectively pruning without
costing the unpromising partitions. This is accomplished
through the preemption of the combined enumeration and
costing activity that algorithm X would traditionally com-
plete by (1) saving, uncosted but in an ordered fashion, only
some of the enumerated partitions in a memoization con-

5

10

15

20

25

30

35

40

45

50

55

60

65

8

struct mTable, (2) generating a plan and then costing the plan
for only some subset of the saved partitions, and (3) then
selecting a “best’ plan.

FIG. 4 and reference numeral 400 present, at a high level
and in pseudo code, an algorithm ordered-Par() that encap-
sulates aspects of the present invention. The ordered-Par()
algorithm divides the enumeration and plan generation pro-
cess of optimization algorithm X into two separate and
distinct phases:

1) Phase 1, an enumeration phase, preempts the combined
enumeration and costing of partitions that algorithm X
would traditionally complete by saving, (a) uncosted but (b)
in an ordered fashion, only certain of the enumerated par-
titions for a subset S=S; U S, in mTable[S] (referred to as
Partitions(S)). FIG. 5 and reference numeral 500 depict, at
a high level and in pseudo code, one possible EnumeratePar-
tition() algorithm with emphasis directed to two supporting
functions—MaxParSize() 502 and Score() 504—that con-
trol the operation of this phase.

The supporting function MaxParSize(S) 502 identifies or
defines, either statically or dynamically, an allowed maxi-
mum size for the current subset S.

The supporting function Score(S;, S,) 504 may imple-
ment any number of scoring models or paradigms including
inter alia:

A) MinSel(S,, S,)=selectivity(p,A . . . Ap,) where
p,—D,, are the join predicates which join the subsets S, and
S,.

B) Minlnput(S,, S,)=cardinality(S,)+cardinality(S,).
This approach considers the estimated sizes of the input
table expressions.

C) MinSets(S,, S,)=IS, [I-lIS, |l This approach, which con-
siders the difference between the number of relations of the
two children (S, and S,), relates the costing of the partitions
to how balanced the left and right subtrees are.

2) Phase 2, a plan generation phase, where execution
plans are generated for only a fraction of the saved partitions
based on various constraints so that inter alia unpromising
partitions may be dropped (pruned). FIG. 6 and reference
numeral 600 depict, at a high level and in pseudo code, one
possible GenerateBestPlan() algorithm with emphasis
directed to two supporting functions—Score() 504 (de-
scribed above) and Budget() 602—that direct the operation
of this phase.

The supporting function Budget() 602 defines possibly
inter alia the desired partition pruning strategy. Among other
things the Budget() function 602 has, during the execution
life of the GenerateBestPlan() function, dynamic access to
full and complete knowledge of the search space (including
inter alia the number of enumerated partitions, the number
of partitions that have already been pruned, etc.) and as a
result the Budget() function 602 can among other things be
dynamically adjusted, tuned, redefined, etc. For example, a
Budget(S) function might be defined as Budget(S)=
CurrentPruneFunction*| Partitions(S|

where:

A) CostPerPar is the estimated CPU time for costing a
partition (as measured ps.

B) BestCost(V) is the best estimated cost found this far for
a complete plan (as measured in s).

C) TotalPar is the number of partitions that were saved
during the enumeration phase.

D) CostedPar is the number of partitions that have already
been costed.

E) PrunedPar is the number of partitions that were pruned
without costing.

US 9,449,045 B2

9

F) CurrentTotalBudget=BestCost(V)/CostPerPar is the
current maximum number of partitions to be costed.

G) CurrentPruneFunction=(CurrentTotalBudget-Costed-
Par)/(TotalPar-CostedPar-PrunedPar).

The different algorithms that were described above are
illustrative only and it will be readily apparent to one of
ordinary skill in the relevant art that various enhancements
or modifications to an algorithm, numerous alternative algo-
rithms, etc. are easily possible. For example and inter alia:

1) Other join enumeration algorithms that possibly inter
alia (a) enumerate partitions and (b) employ memoization to
save access plans may be substituted for algorithm X.

2) Two or more different join enumeration algorithms
(that possibly inter alia (a) enumerate partitions and (b)
employ memoization to save access plans) may be dynami-
cally selected as an algorithm X during execution of an
ordered-Par() algorithm.

3) In an EnumeratePartition() algorithm, sorting and/or
pruning may be skipped if for example the search space is
determined to be sparse.

4) Various enhanced system resource (e.g., memory, etc.)
management capabilities may be implemented. As just one
example, in the GenerateBestPlan() algorithm that is pre-
sented in FIG. 6 the memory that was allocated to a
Partitions(S) construct is explicitly released at the end of the
routine.

5) Any combination of different pruning approaches (e.g.,
cost-based, etc.) may be employed in a GenerateBestPlan()
algorithm.

6) Any number of different Budget() functions may be
employed. For example, a Budget(S) function might be
defined as Budget(S) € {min(¥4 MaxParSize(S), [Partitions
(S)), 50%|Partitions(S)I100%]Partitions(S)! }.

7) A particular join enumeration algorithm (such as inter
alia backtracking as offered by for example Sybase’s SQL
Anywhere) may be executed first, before an algorithm X is
invoked, to obtain inter alia an initial or baseline cost.

FIG. 7 through FIG. 11 present various testing results that
were obtained during empirical testing of the ordered-Par()
algorithm:

1) FIG. 7 and reference numeral 700 capture the results of
a particular query being optimized through two different
algorithms, DPhyp() and ordered-DPhyp() (the DPhyp()
algorithm augmented with the ordered-Par() algorithm),
where Score()=MinSel(), MaxParSize()=5, and Budget
(S)= CurrentPruneFunction*|Partitions(S)I.

2) FIG. 8 and reference numeral 800 capture two particu-
lar results (memory consumption and total cost) from a
particular query being optimized through two different algo-
rithms, DPhyp() and ordered-DPhyp() (the DPhyp()
algorithm augmented with the ordered-Par() algorithm),
where Score(S,;, S,)=MinSel(S,, S,), MaxParSize(S) € {1,
2, ..., 20}, and Budget(S) € {min(*4 MaxParSize(S),
[Partitions(S)1), 50%IPartitions(S)I100%|Partitions(S)!}.

3) FIGS. 9—11 and reference numerals 900/1000/1100
capture two particular results (memory consumption and
total cost) from a particular query having three different
shapes—chain, cycle, and star—being optimized through
different algorithms (backtrackingM, DPhyp, MinCutHyp,
and TopDown as offered by for example Sybase’s SQL
Anywhere) vs. ordered-DPhyp() (the DPhyp() algorithm
augmented with the ordered-Par() algorithm), where Score
(S,, S,) € {MinSel(S,, S,), Minlnput(S,, S,), MinSets(S,,
S,)}, MaxParSize(S)=10, and Budget(S)=60%IPartitions
S)I.

In brief, during testing the ordered-DPhyp() algorithm
exhibited advantageous characteristics (e.g., the costing of

20

30

40

45

65

10

fewer partitions, the efficient consumption of memory, etc.)
and yielded lower optimization times.

The technology that was described above may be imple-
mented as logical operations and/or modules in or across one
or more computer systems. The logical operations may be
implemented as a sequence of processor-implemented steps
executing in one or more computer systems and as inter-
connected machine or circuit modules within one or more
computer systems. Likewise, the descriptions of various
component modules may be provided in terms of operations
executed or effected by the modules. The resulting imple-
mentation details are a matter of choice, dependent on the
performance requirements of the underlying system imple-
menting the described technology. Accordingly, the logical
operations making up the embodiments of the technology
described above are referred to variously as operations,
steps, objects, or modules. Furthermore, it should be under-
stood that logical operations may be performed in any order,
unless explicitly claimed otherwise or unless a specific order
is inherently necessitated by the claim language.

The above specification provides a complete description
of the structure and use of exemplary embodiments of the
present invention. Although various embodiments of the
invention have been described above with a certain degree
of particularity, or with reference to one or more individual
embodiments, it is to be understood that such material is
exemplary only and it is not intended to be exhaustive or to
limit the invention to the specific forms disclosed. Those
skilled in the art could inter alia make numerous alterations
to the disclosed embodiments without departing from the
spirit or scope of this invention. Changes in detail or
structure may be made without departing from the basic
elements of the invention as defined in the appended claims.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
arts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claimed subject matter.

The following list defines acronyms as used in this
disclosure:

Acrony01 Meaning

BIOS Basic Input/Output System

CD-ROM Compact Disc Read Only Memory

DBMS Database Management System

DRAM Dynamic Random Access Memory

EPROM Erasable Programmable Read-Only Memory

GUI Graphical User Interface

/O Input/Output

LAN Local Area Network

MEMS Microelectromechanical Systems

[} Operating System

PC Personal Computer

PCMCIA Personal Computer Memory Card International
Association

PDA Personal Digital Assistant

PROM Programmable Read-Only Memory

RAM Random Access Memory

RDBMS Relational Database Management System

RF Radio Frequency

SQL Structured Query Language

WAN Wide Area Network

WWW World Wide Web

US 9,449,045 B2

11

What is claimed is:

1. A computer-implemented method for selecting an
execution plan for a database request, the method compris-
ing:

processing aspects of the database request, including at

least:

enumerating a portion of possible valid logical plans,
based on at least a maximum search space size,
yielding enumerated logical plans,

preserving, uncosted, a portion of the enumerated logi-
cal plans, yielding a candidate search space,

ordering entries in the candidate search space based on
at least a dynamic scoring function, yielding a can-
didate search space order, and

generating a physical plan for a portion of the entries in
the candidate search space, yielding generated physi-
cal plans, wherein:

the generating proceeds according to the candidate
search space order and a dynamic budget function so
as to drop unpromising entries, and

the dynamic budget function defines a desired partition
pruning strategy, is dynamically updated during the
generating, and is determined based on a difference
between a current maximum number of logical plans
to be costed and a number of logical plans that have
already been costed divided by a difference between
a total number of logical plans saved during the
enumerating and a number of costed logical plans
and a number of logical plans pruned without cost-
ing;

reviewing a subset of the generated physical plans to
select the execution plan;

executing the database request based on the selected
execution plan; and

returning a result of the executed database request.

2. The method of claim 1, wherein the database request
includes a Structured Query Language statement.

3. The method of claim 1, wherein the dynamic scoring
function evaluates a logical property of the enumerated
logical plans.

4. The method of claim 1, wherein the dynamic scoring
function evaluates a characteristic of one or more join
predicates.

5. The method of claim 1, wherein the dynamic scoring
function evaluates a size of one or more database objects.

6. The method of claim 5, wherein the one or more
database objects include at least one database table.

7. The method of claim 1, wherein the processing step and
the reviewing step reside within a join enumeration algo-
rithm that at least enumerates a plurality of logical plans and
generates a plurality physical plans.

8. A non-transitory computer readable medium having
instructions stored thereon that when executed by a proces-
sor, cause the processor to perform operations for selecting
an execution plan for a database request, the operations
comprising:

processing aspects of the database request, including at

least:

enumerating a portion of possible valid logical plans,
based on at least a maximum search space size,
yielding enumerated logical plans,

preserving, uncosted, a portion of the enumerated logi-
cal plans, yielding a candidate search space,

ordering entries in the candidate search space based on
at least a dynamic scoring function, yielding a can-
didate search space order, and

10

15

20

25

30

35

40

45

50

55

60

12

generating a physical plan for a portion of the entries in
the candidate search space, yielding generated physi-
cal plans, wherein:

the generating proceeds according to the candidate
search space order and a dynamic budget function so
as to drop unpromising entries, and

the dynamic budget function defines a desired partition
pruning strategy, is dynamically updated during the
generating, and is determined based on a difference
between a current maximum number of logical plans
to be costed and a number of logical plans that have
already been costed divided by a difference between
a total number of logical plans saved during the
enumerating and a number of costed logical plans
and a number of logical plans pruned without cost-
ing;

reviewing a subset of the generated physical plans to

select the execution plan;

executing the database request based on the selected

execution plan; and

returning a result of the executed database request.

9. The non-transitory computer readable medium of claim
8, wherein the database request includes a Structured Query
Language statement.

10. The non-transitory computer readable medium of
claim 8, wherein the dynamic scoring function evaluates a
logical property of the enumerated logical plans.

11. The non-transitory computer readable medium of
claim 8, wherein the dynamic scoring function evaluates a
characteristic of one or more join predicates.

12. non-transitory computer readable medium of claim 8,
wherein the dynamic scoring function evaluates a size of one
or more database objects.

13. The non-transitory computer readable medium of
claim 12, wherein the one or more database objects include
at least one database table.

14. The non-transitory computer readable medium of
claim 8, wherein the processing step and the reviewing step
reside within a join enumeration algorithm that at least
enumerates a plurality of logical plans and generates a
plurality physical plans.

15. A system comprising:

one Or mMore processors;

one or more computer readable media; and

computer readable instructions stored on the one or more

computer readable media that when executed by the
one or more processors, cause the one or more proces-
sors to perform operations for selecting an execution
plan for a database request by:
processing aspects of the database request, including at
least:
enumerating a portion of possible valid logical plans,
based on at least a maximum search space size,
yielding enumerated logical plans,
preserving, uncosted, a portion of the enumerated
logical plans, yielding a candidate search space,
ordering entries in the candidate search space based
on at least a dynamic scoring function, yielding a
candidate search space order,
generating a physical plan for a portion of the entries
in the candidate search space, yielding generated
physical plans, wherein:
the generating proceeds according to the candidate
search space order and a dynamic budget function
so as to drop unpromising entries, and
the dynamic budget function defines a desired par-
tition pruning strategy, is dynamically updated

US 9,449,045 B2

13

during the generating, and is determined based on
a difference between a current maximum number
of logical plans to be costed and a number of
logical plans that have already been costed divided
by a difference between a total number of logical
plans saved during the enumerating and a number
of costed logical plans and a number of logical
plans pruned without costing,
reviewing a subset of the generated physical plans to
select the execution plan,
executing the database request based on the selected
execution plan, and
returning a result of the executed database request.

16. The system of claim 15, wherein the database request
includes a Structured Query Language statement.

17. The system of claim 15, wherein the dynamic scoring
function evaluates a logical property of the enumerated
logical plans.

18. The system of claim 15, wherein the dynamic scoring
function evaluates a characteristic of one or more join
predicates.

19. The system of claim 15, wherein the dynamic scoring
function evaluates a size of one or more database objects.

20. The system of claim 19, wherein the one or more
database objects include a database table.

21. The system of claim 15, wherein the processing step
and the reviewing step reside within a join enumeration
algorithm that at least enumerates a plurality of logical plans
and generates a plurality physical plans.

22. A system comprising:

one or more processors;

a memory coupled to at least one of the one or more

processors; and

10

15

20

25

30

14

a query optimizer residing in the memory that, when
executed by at least one of the one or more processors:
enumerates, for a database request, a portion of pos-
sible valid logical plans, based on at least a maxi-
mum search space size, yielding enumerated logical
plans;

preserves, uncosted, a portion of the enumerated logical
plans, yielding a candidate search space;

orders entries in the candidate search space based on at
least a dynamic scoring function, yielding a candi-
date search space order;

generates a physical plan for a portion of the entries in
the candidate search space, yielding generated physi-
cal plans, wherein:

the generating proceeds according to the candidate
search space order and a dynamic budget function so
as to drop unpromising entries, and

the dynamic budget function defines a desired partition
pruning strategy, is dynamically updated during the
generating, and is determined based on a difference
between a current maximum number of logical plans
to be costed and a number of logical plans that have
already been costed divided by a difference between
a total number of logical plans saved during the
enumerating and a number of costed logical plans
and a number of logical plans pruned without cost-
ing; and

reviews a subset of the generated physical plans to
select an execution plan,

wherein the at least one of the one or more processors:
executes the database request based on the selected

execution plan; and
returns a result of the executed database request.

#* #* #* #* #*

